
CS273P Homework #5
Machine Learning & Data Mining: Spring 2018

Due: Thursday June 7th, 2018

Write neatly (or type) and show all your work!

Problem 1: Basics of Clustering (50 pts)

The code this week provides the three clustering algorithms we discussed: k-means, agglomerative
clustering, and EM for Gaussian mixture models; we will explore the �rst two here. (These functions
are also provided in many 3rd party toolboxes; you are free to use those if you prefer.) In this
problem, you'll do some basic exploration of the clustering techniques.

(a) Load the usual Iris data restricted to the �rst two features, and ignore the class / target
variable. Plot the data and see for yourself how �clustered� you think it looks.

(b) Run k-means on the data, for k = 5 and k = 20. For each, turn in a plot with the data,
colored by assignment, and the cluster centers. (You can easily do this yourself manually,
using ml.plotClassify2D(None,X,z), where z are the resulting cluster assignments of the
data.) Try a few (5+) di�erent initializations and check to see whether they �nd the same
solution; if not, pick the one with the best score.

(c) Run agglomerative clustering on the data, using single linkage and then again using complete

linkage, each with 5 and then 20 clusters. Again, plot with color the �nal assignment of the
clusters, and describe their similarities and di�erences from each other and k-means. (This
algorithm has no initialization issues; so you do not have to try multiple initializations.)

(d) (Optional) Run the EM Gaussian mixture model with 5 components. (Note: if you also
decide to try 20 components, you may get some rank de�ciency errors.) As with k-means, you
may want to try several initializations. Again, compare / discuss di�erences with the other
clusterings. Which do you think is most reasonable?

As a side note: Clustering is often a useful element of other predictive tasks, like supervised
learning. To be used properly, you need to be able to de�ne the �out of sample� cluster assignments,
but this is very easy for k-means and EM (a bit less so for agglomerative); for k-means, say:
crule = ml.knnClassify( clusters, np.arange(k), 1 ); z = crule.predict( X );
Then, you can then use these cluster assignments as a feature in a classi�er:
Phi = lambda x: ml.to1ofK( crule.predict(x) , np.arange(k) );
will create k new binary features indicating which of the clusters is closest to a new point x.

Problem 2: EigenFaces (50 pts)

In class I mentioned that PCA has been applied to faces, and showed some of the results. Here,
you'll explore this representation yourself. First, load the data and display a few faces to make sure
you understand the data format:

X = np.genfromtxt("data/faces.txt", delimiter=None) # load face dataset
plt.figure()
# pick a data point i for display
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img = np.reshape(X[i,:],(24,24)) # convert vectorized data point to 24x24 image patch
plt.imshow( img.T , cmap="gray") # display image patch; you may have to squint

(a) Subtract the mean of the face images (X0 = X−µ) to make your data zero-mean. (The mean
should be of the same dimension as a face, 576 pixels.)

(b) Use scipy.linalg.svd to take the SVD of the data, so that

X0 = U · diag(S) · V h

Note that since the number of data is larger than the number of dimensions, there are at
most 576 non-zero singular values; you can use full_matrices=False to avoid using a lot
of memory. As in the slides, I suggest computing W = U.dot( np.diag(S) ) so that X0 ≈
W · V h.

(c) For K = 1 . . . 10, compute the approximation to X0 given by the �rst K eigendirections, e.g.,
X̂0 = W [:, : K] · V h[: K, :], and use them to compute the mean squared error in the SVD's
approximation, np.mean( (X0 − X̂0)**2 ). Plot these MSE values as a function of K.

(d) Display the �rst three principal directions of the data, by computing µ+α V[j,:] and µ-α V[j,:],
where α is a scale factor (I suggest, for example, 2*np.median(np.abs(W[:,j])), Wo get
a sense of the scale found in the data). These should be vectors of length 242 = 576, so you
can reshape them and view them as �face images� just like the original data. They should be
similar to the images in lecture.

(e) Choose two faces and reconstruct them using only the �rst K principal directions, for K =
5, 10, 50, 100.

(f) Methods like PCA are often called �latent space� methods, as the coe�cients can be interpreted
as a new geometric space in which the data are being described. To visualize this, choose a
few faces at random (say, about 15�25), and display them as images with the coordinates
given by their coe�cients on the �rst two principal components:

idx = ... # pick some data at random or otherwise; a list / vector of integer indices

import mltools.transforms
coord,params = ml.transforms.rescale( W[:,0:2] ) # normalize scale of "W" locations
plt.figure(); plt.hold(True); # you may need this for pyplot
for i in idx:

# compute where to place image (scaled W values) & size
loc = (coord[i,0],coord[i,0]+0.5, coord[i,1],coord[i,1]+0.5)
img = np.reshape( X[i,:], (24,24) ) # reshape to square
plt.imshow( img.T , cmap="gray", extent=loc ) # draw each image
plt.axis( (-2,2,-2,2) ) # set axis to reasonable visual scale

This can often help you get a �feel� for what the latent representation is capturing.
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